Sains Malaysiana 53(11)(2024): 3779-3789

http://doi.org/10.17576/jsm-2024-5311-20

 

Development of Food Commodity Price Forecasting Model as an Early Warning System with a Multivariate Time Series Clustering

(Pembangunan Model Peramalan Harga Komoditi Makanan sebagai Sistem Amaran Awal dengan Pengelompokan Siri Masa Multivariat)

 

I MADE SUMERTAJAYA1,*, EMBAY ROHAETI2, ANWAR FITRIANTO1 & WINDHIARSO PONCO ADI P3

 

1Department of Statistics, Faculty of Mathematics and Science, Bogor Agricultural University, 16680 Bogor, West Java, Indonesia
2Department of Mathematics, Faculty of Mathematics and Science, Pakuan University, 16129 Bogor, West Java, Indonesia
3Badan Pusat Statistik, 10440 Jakarta, West Java, Indonesia

 

Received: 17 June 2024/Accepted: 30 September 2024

 

Abstract

Fluctuations in food commodity prices have a significant impact on a country’s food security, purchasing power, and economic growth. Therefore, good governance is needed to maintain price stability, one of which is by developing a forecasting model as an early warning system. This study aims to develop a food commodity price forecasting model using Multivariate Time Series Clustering (MTSClust) and Vector Autoregressive Imputation Method with Moving Average (VAR-IMMA) approaches for food commodities in the Indonesian region. The data used in this study consisted of daily prices of 13 commodities from 103 districts/cities in Indonesia. Data analysis was conducted in several stages, namely VAR modeling, K-means Euclidean clustering, profiling, and forecasting. The results show that 103 sample districts/cities across Indonesia can be grouped into four types of regions based on food price movement patterns. There are homogeneous islands such as Maluku where the sample district/city are in the same cluster, but there are also heterogeneous islands such as Kalimantan and Papua with their four clusters. The forecasting evaluation results show good accuracy with Root Mean Square Error (RMSE) scores below IDR 1000.00 in most cases, which is equivalent to Mean Absolute Percentage Error (MAPE) scores below 10%. However, two commodities, namely cayenne pepper and red chili, need more attention due to relatively high RMSE and MAPE scores, although not exceeding 30% MAPE in most cases. These results show that the MTSClust and VAR-IMMA approaches are accurate in forecasting food commodity prices, although further research is needed for the two chili commodities.

 

Keywords: Early warning system; food security; MTSClust; VAR; VAR-IMMA

 

Abstrak

Turun naik dalam harga komoditi makanan mempunyai kesan yang besar terhadap keselamatan makanan, kuasa beli dan pertumbuhan ekonomi sesebuah negara. Oleh itu, tadbir urus yang baik diperlukan untuk mengekalkan kestabilan harga, salah satunya dengan membangunkan model peramalan sebagai sistem amaran awal. Kajian ini bertujuan untuk membangunkan model peramalan harga komoditi makanan menggunakan pendekatan Siri Masa Multivariat Berkelompok (MTSClust) dan Kaedah Pengimputan Vektor Autoregresif dengan Purata Bergerak (VAR-IMMA) bagi komoditi makanan di wilayah Indonesia. Data yang digunakan dalam kajian ini terdiri daripada harga harian 13 komoditi dari 103 daerah/bandar di Indonesia. Analisis data dijalankan dalam beberapa peringkat iaitu pemodelan VAR, K-means Euclidean berkelompok, pemprofilan dan peramalan. Hasil kajian menunjukkan bahawa 103 sampel daerah/bandar di seluruh Indonesia boleh dikumpulkan kepada empat jenis wilayah berdasarkan corak pergerakan harga makanan. Terdapat pulau homogen seperti Maluku di mana daerah/bandar sampel berada dalam kelompok yang sama, tetapi terdapat juga pulau heterogen seperti Kalimantan dan Papua dengan empat kelompoknya. Keputusan penilaian peramalan menunjukkan ketepatan yang baik dengan skor Punca Min Ralat Kuasa Dua (RMSE) di bawah IDR 1000.00 dalam kebanyakan kes, yang bersamaan dengan skor Min Ralat Peratusan Mutlak (MAPE) di bawah 10%. Walau bagaimanapun, dua komoditi iaitu lada cayenne dan cili merah memerlukan lebih perhatian kerana markah RMSE dan MAPE yang agak tinggi, walaupun tidak melebihi 30% MAPE dalam kebanyakan kes. Keputusan ini menunjukkan bahawa pendekatan MTSClust dan VAR-IMMA adalah tepat dalam meramalkan harga komoditi makanan, walaupun kajian lanjut diperlukan untuk kedua-dua komoditi cili ini.

 

Kata kunci: Keselamatan makanan; MTSClust; sistem amaran awal; VAR; VAR-IMMA

 

REFERENCES

Ajewole, K.P., Adejuwon, S.O. & Jemilohun, V.G. 2020. Test for stationarity on inflation rates in Nigeria using augmented Dickey Fuller test and Phillips-Persons test. IOSR Journal of Mathematics 16(3): 11-14.

Akkaya, M. 2021. Vector autoregressive model and analysis. In Handbook of Research on Emerging Theories, Models, and Applications of Financial Econometrics, edited by Adigüzel Mercangöz, B. Springer, Cham. https://doi.org/10.1007/978-3-030-54108-8_8

Badan Pangan Nasional. 2022. ‘Indeks Ketahanan Pangan’. https://badanpangan.go.id/storage/app/media/2023/Buku%20Digital/Buku%20Indeks%20Ketahanan%20Pangan%202022%20 Signed.pdf

Batarseh, A. 2021. The nature of the relationship between the money supply and inflation in the Jordanian Economy (1980-2019). Banks and Bank Systems 16(2): 38-46. https://doi.org/10.21511/bbs.16(2).2021.04

Chang, Y. & Park, J.Y. 2002. On the asymptotics of ADF tests for unit roots. Econometric Reviews 21(4): 431-447. https://doi.org/10.1081/ETC-120015385

Dewi, C., Prasatya, G.S.K., Christanto, H.J., Widiarto, S.O.B., & Dai, G. 2023. Modified random forest regression model for predicting wholesale rice prices. Journal of Theoretical and Applied Information Technology 101(23): 7749-7759.

Dickey, D.A. & Fuller, W.A. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74(366): 427-431. https://doi.org/10.1080/01621459.1979.10482531

Effendy, Evansyah D., Antara, M., Noli, K., & Pratama, F.M. 2021. Forecasting model of production and price of grains commodity in Central Sulawesi. Journal of Theoretical and Applied Information Technology 99(14): 3555-3563. https://doi.org/10.46300/9103.2021.9.8

Fadhlurrahman, I. 2024. “Jumlah Penduduk Di 38 Provinsi Indonesia Desember 2023.” Databoks. February 15, 2024. https://databoks.katadata.co.id/datapublish/2024/02/15/jumlah-penduduk-di-38-provinsi indonesia-desember-2023.

FAO Food Price Index. 2014. Africa Research Bulletin: Economic, Financial and Technical Series 51(9): 20574A. https://doi.org/10.1111/j.1467-6346.2014.06047.x.

Firmansyah, Maruli, P. & Harahap, A. 2023. Analysis of beef market integration between consumer and producer regions in Indonesia. Open Agriculture 8(1): 20220221. https://doi.org/10.1515/opag-2022-0221

Global Food Security Index. 2022. The Economist Intelligence Unit.

Hodson, T.O. 2022. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development 15(14): 5481-5487. https://doi.org/10.5194/gmd-15-5481-2022

Ikotun, A.M., Ezugwu, A.E., Abualigah, L., Abuhaija, B. & Heming, J. 2023. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences 622: 178-210. https://doi.org/10.1016/j.ins.2022.11.139

Januzaj, Y., Beqiri, E. & Luma, A. 2023. Determining the optimal number of clusters using silhouette score as a data mining technique. International Journal of Online and Biomedical Engineering 19(4): 174-182. https://doi.org/10.3991/ijoe.v19i04.37059

Kamalov, F. 2021. A note on time series differencing. Gulf Journal of Mathematics 10(2): 50-56. https://doi.org/10.56947/gjom.v10i2.609

Kementerian Pertanian. 2022. Statistik Ketahanan Pangan 2022. https://satudata.pertanian.go.id/assets/docs/publikasi/Statistik_Ketahanan_Pangan_2022.pdf

Kusnadi, N.A. 2024. Pengaruh fluktuasi harga komoditas pangan terhadap inflasi di Provinsi Jawa Timur. Thesis. FEB Universitas Brawijaya 6 (2).

Moritz, S. & Bartz-Beielstein, T. 2017. ImputeTS: Time series missing value imputation in R. R Journal 9(1): 207-218. https://doi.org/10.32614/rj-2017-009

 Nurhasanatun, Usman, B. & Afrijal. 2023. Analisis peran tim pengendalian inflasi Daerah Kota Banda Aceh dalam pengendalian inflasi. Jurnal Ilmiah Mahasiswa FISIP USK 8(2). www.jim.unsyiah.ac.id/Fisip

Prasetyo, K., Putri, D.D., Wijayanti, I.K.E. & Zulkifli, L. 2023. Forecasting of red chilli prices in Banyumas Regency: The ARIMA approach. E3S Web of Conferences 444: 02017. https://doi.org/10.1051/e3sconf/202344402017

Primageza, H., Vinarti, R.A., Tyasnurita, R., Riksakomara, E. & Muklason, A. 2021. Comparison of NNs-ARIMAX and NNs-GSTARIMAX on rice price forecasting in Indonesia. 2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Depok, Indonesia. pp. 1-8. https://doi.org/10.1109/ICACSIS53237.2021.9631332

Rohaeti, E., Sumertajaya, I.M., Wigena, A.H. & Sadik, K. 2023. MTSClust with handling missing data using VAR-Moving average imputation. Mathematics and Statistics 11(2): 229-244. https://doi.org/10.13189/ms.2023.110201

Rohaeti, E., Sumertajaya, I.M., Wigena, A.H. & Sadik, K. 2022. The prominence of vector autoregressive model in multivariate time series forecasting models with stationary problems. BAREKENG: Jurnal Ilmu Matematika dan Terapan 16(4): 1313-1324. https://doi.org/10.30598/barekengvol16iss4pp1313-1324

Roziah, T.R., Septiani, R., Amapoli, E.V. & Muhammad, R. 2023. Inflasi di Indonesia: Perkembangan dan pengendaliannya. Jurnal Ilmiah Multidisiplin 1(10): 9-18.

Salasa, A.R. 2021. Paradigma dan dimensi strategi ketahanan pangan Indonesia. Jejaring Administrasi Publik 13(1): 35-48. https://doi.org/10.20473/jap.v13i1.29357

Sumertajaya, I.M., Rohaeti, E., Wigena, A.H. & Sadik, K. 2023. Vector autoregressive-moving average imputation algorithm for handling missing data in multivariate time series. IAENG International Journal of Computer Science 50(2): IJCS_50_2_42.

Vivas, E., Allende-Cid, H. & Salas, R. 2020. A systematic review of statistical and machine learning methods for electrical power forecasting with reported mape score. Entropy https://doi.org/10.3390/e22121412

 

*Corresponding author; email: imsjaya@apps.ipb.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next