Sains Malaysiana 53(11)(2024): 3779-3789
http://doi.org/10.17576/jsm-2024-5311-20
Development of Food Commodity Price Forecasting Model
as an Early Warning System with a Multivariate Time Series Clustering
(Pembangunan Model Peramalan Harga Komoditi Makanan sebagai Sistem Amaran Awal dengan Pengelompokan Siri
Masa Multivariat)
I MADE SUMERTAJAYA1,*,
EMBAY ROHAETI2, ANWAR FITRIANTO1 & WINDHIARSO PONCO
ADI P3
1Department of
Statistics, Faculty of Mathematics and Science, Bogor Agricultural University,
16680 Bogor, West Java, Indonesia
2Department of Mathematics, Faculty of Mathematics and Science, Pakuan University, 16129 Bogor, West Java, Indonesia
3Badan Pusat Statistik, 10440 Jakarta,
West Java, Indonesia
Received: 17 June 2024/Accepted:
30 September 2024
Abstract
Fluctuations in food commodity
prices have a significant impact on a country’s food security, purchasing
power, and economic growth. Therefore, good governance is needed to maintain
price stability, one of which is by developing a forecasting model as an early
warning system. This study aims to develop a food commodity price forecasting
model using Multivariate Time Series Clustering (MTSClust)
and Vector Autoregressive Imputation Method with Moving Average (VAR-IMMA)
approaches for food commodities in the Indonesian region. The data used in this
study consisted of daily prices of 13 commodities from 103 districts/cities in
Indonesia. Data analysis was conducted in several stages, namely VAR modeling, K-means Euclidean clustering, profiling, and
forecasting. The results show that 103 sample districts/cities across Indonesia
can be grouped into four types of regions based on food price movement
patterns. There are homogeneous islands such as Maluku where the sample
district/city are in the same cluster, but there are also heterogeneous islands
such as Kalimantan and Papua with their four clusters. The forecasting
evaluation results show good accuracy with Root Mean Square Error (RMSE) scores
below IDR 1000.00 in most cases, which is equivalent to Mean Absolute
Percentage Error (MAPE) scores below 10%. However, two commodities, namely
cayenne pepper and red chili, need more attention due to relatively high RMSE
and MAPE scores, although not exceeding 30% MAPE in most cases. These results
show that the MTSClust and VAR-IMMA approaches are
accurate in forecasting food commodity prices, although further research is
needed for the two chili commodities.
Keywords: Early warning system; food security; MTSClust; VAR; VAR-IMMA
Abstrak
Turun naik dalam harga komoditi makanan mempunyai kesan yang besar terhadap keselamatan makanan, kuasa beli dan pertumbuhan ekonomi sesebuah negara. Oleh itu, tadbir urus yang baik diperlukan untuk mengekalkan kestabilan harga, salah satunya dengan membangunkan model peramalan sebagai sistem amaran awal.
Kajian ini bertujuan untuk membangunkan model peramalan harga komoditi makanan menggunakan pendekatan Siri Masa Multivariat Berkelompok (MTSClust) dan Kaedah Pengimputan Vektor Autoregresif dengan Purata Bergerak (VAR-IMMA) bagi komoditi makanan di wilayah Indonesia. Data yang digunakan dalam kajian ini terdiri daripada harga harian 13 komoditi dari 103 daerah/bandar di Indonesia. Analisis data dijalankan dalam beberapa peringkat iaitu pemodelan VAR, K-means Euclidean berkelompok, pemprofilan dan peramalan.
Hasil kajian menunjukkan bahawa 103 sampel daerah/bandar di seluruh Indonesia boleh dikumpulkan kepada empat jenis wilayah berdasarkan corak pergerakan harga makanan. Terdapat pulau homogen seperti Maluku di mana daerah/bandar sampel berada dalam kelompok yang sama, tetapi terdapat juga pulau heterogen seperti Kalimantan dan Papua dengan empat kelompoknya.
Keputusan penilaian peramalan menunjukkan ketepatan yang baik dengan skor Punca Min Ralat Kuasa Dua (RMSE) di bawah IDR 1000.00 dalam kebanyakan kes, yang bersamaan dengan skor Min Ralat Peratusan Mutlak (MAPE) di bawah 10%. Walau bagaimanapun, dua komoditi iaitu lada cayenne dan cili merah memerlukan lebih perhatian kerana markah RMSE dan MAPE yang agak tinggi, walaupun tidak melebihi 30% MAPE dalam kebanyakan kes. Keputusan ini menunjukkan bahawa pendekatan MTSClust dan VAR-IMMA adalah tepat dalam meramalkan harga komoditi makanan, walaupun kajian lanjut diperlukan untuk kedua-dua komoditi cili ini.
Kata kunci: Keselamatan makanan; MTSClust; sistem amaran awal;
VAR; VAR-IMMA
REFERENCES
Ajewole, K.P., Adejuwon,
S.O. & Jemilohun, V.G. 2020. Test for
stationarity on inflation rates in Nigeria using augmented Dickey Fuller test
and Phillips-Persons test. IOSR Journal of Mathematics 16(3): 11-14.
Akkaya, M. 2021. Vector autoregressive model and
analysis. In Handbook of Research on Emerging Theories, Models, and
Applications of Financial Econometrics, edited by Adigüzel Mercangöz, B. Springer, Cham. https://doi.org/10.1007/978-3-030-54108-8_8
Badan Pangan Nasional. 2022. ‘Indeks Ketahanan Pangan’.
https://badanpangan.go.id/storage/app/media/2023/Buku%20Digital/Buku%20Indeks%20Ketahanan%20Pangan%202022%20 Signed.pdf
Batarseh, A. 2021. The nature of the relationship
between the money supply and inflation in the Jordanian Economy (1980-2019). Banks
and Bank Systems 16(2): 38-46. https://doi.org/10.21511/bbs.16(2).2021.04
Chang, Y. & Park, J.Y. 2002. On the asymptotics of ADF tests for unit roots. Econometric
Reviews 21(4): 431-447. https://doi.org/10.1081/ETC-120015385
Dewi, C., Prasatya,
G.S.K., Christanto, H.J., Widiarto,
S.O.B., & Dai, G. 2023. Modified random forest regression model for
predicting wholesale rice prices. Journal of Theoretical and Applied
Information Technology 101(23): 7749-7759.
Dickey, D.A. & Fuller, W.A. 1979.
Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74(366): 427-431.
https://doi.org/10.1080/01621459.1979.10482531
Effendy, Evansyah D., Antara, M., Noli, K., & Pratama,
F.M. 2021. Forecasting model of production and price of grains commodity in
Central Sulawesi. Journal of Theoretical and Applied Information Technology 99(14): 3555-3563. https://doi.org/10.46300/9103.2021.9.8
Fadhlurrahman, I. 2024. “Jumlah Penduduk Di 38 Provinsi Indonesia Desember 2023.” Databoks.
February 15, 2024.
https://databoks.katadata.co.id/datapublish/2024/02/15/jumlah-penduduk-di-38-provinsi
indonesia-desember-2023.
FAO Food Price Index. 2014. Africa
Research Bulletin: Economic, Financial and Technical Series 51(9): 20574A.
https://doi.org/10.1111/j.1467-6346.2014.06047.x.
Firmansyah, Maruli, P.
& Harahap, A. 2023. Analysis of beef market
integration between consumer and producer regions in Indonesia. Open
Agriculture 8(1): 20220221. https://doi.org/10.1515/opag-2022-0221
Global Food Security Index. 2022. The
Economist Intelligence Unit.
Hodson, T.O. 2022. Root-mean-square error
(RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific
Model Development 15(14): 5481-5487.
https://doi.org/10.5194/gmd-15-5481-2022
Ikotun, A.M., Ezugwu,
A.E., Abualigah, L., Abuhaija,
B. & Heming, J. 2023. K-means clustering algorithms: A comprehensive
review, variants analysis, and advances in the era of big data. Information
Sciences 622: 178-210. https://doi.org/10.1016/j.ins.2022.11.139
Januzaj, Y., Beqiri,
E. & Luma, A. 2023. Determining the optimal
number of clusters using silhouette score as a data mining technique. International
Journal of Online and Biomedical Engineering 19(4): 174-182.
https://doi.org/10.3991/ijoe.v19i04.37059
Kamalov, F. 2021. A note on time series
differencing. Gulf Journal of Mathematics 10(2): 50-56.
https://doi.org/10.56947/gjom.v10i2.609
Kementerian Pertanian.
2022. Statistik Ketahanan Pangan 2022.
https://satudata.pertanian.go.id/assets/docs/publikasi/Statistik_Ketahanan_Pangan_2022.pdf
Kusnadi, N.A. 2024. Pengaruh fluktuasi harga komoditas pangan terhadap inflasi di Provinsi Jawa Timur. Thesis.
FEB Universitas Brawijaya 6 (2).
Moritz, S. & Bartz-Beielstein,
T. 2017. ImputeTS: Time series missing value
imputation in R. R Journal 9(1): 207-218.
https://doi.org/10.32614/rj-2017-009
Nurhasanatun, Usman, B. & Afrijal.
2023. Analisis peran tim pengendalian inflasi Daerah Kota Banda Aceh dalam pengendalian inflasi. Jurnal Ilmiah Mahasiswa FISIP USK 8(2). www.jim.unsyiah.ac.id/Fisip
Prasetyo, K., Putri, D.D., Wijayanti,
I.K.E. & Zulkifli, L. 2023. Forecasting of red
chilli prices in Banyumas Regency: The ARIMA approach. E3S Web of Conferences 444: 02017.
https://doi.org/10.1051/e3sconf/202344402017
Primageza, H., Vinarti,
R.A., Tyasnurita, R., Riksakomara,
E. & Muklason, A. 2021. Comparison of NNs-ARIMAX
and NNs-GSTARIMAX on rice price forecasting in Indonesia. 2021 International
Conference on Advanced Computer Science and Information Systems (ICACSIS),
Depok, Indonesia. pp. 1-8. https://doi.org/10.1109/ICACSIS53237.2021.9631332
Rohaeti, E., Sumertajaya,
I.M., Wigena, A.H. & Sadik,
K. 2023. MTSClust with handling missing data using
VAR-Moving average imputation. Mathematics and Statistics 11(2):
229-244. https://doi.org/10.13189/ms.2023.110201
Rohaeti, E., Sumertajaya,
I.M., Wigena, A.H. & Sadik,
K. 2022. The prominence of vector autoregressive model in multivariate time
series forecasting models with stationary problems. BAREKENG: Jurnal Ilmu Matematika dan Terapan 16(4): 1313-1324.
https://doi.org/10.30598/barekengvol16iss4pp1313-1324
Roziah, T.R., Septiani,
R., Amapoli, E.V. & Muhammad, R. 2023. Inflasi di Indonesia: Perkembangan dan pengendaliannya. Jurnal Ilmiah Multidisiplin 1(10): 9-18.
Salasa, A.R. 2021. Paradigma dan dimensi strategi ketahanan pangan Indonesia. Jejaring Administrasi Publik 13(1): 35-48.
https://doi.org/10.20473/jap.v13i1.29357
Sumertajaya, I.M., Rohaeti,
E., Wigena, A.H. & Sadik,
K. 2023. Vector autoregressive-moving average imputation algorithm for handling
missing data in multivariate time series. IAENG International Journal of
Computer Science 50(2): IJCS_50_2_42.
Vivas, E., Allende-Cid, H. & Salas, R. 2020.
A systematic review of statistical and machine learning methods for electrical
power forecasting with reported mape score. Entropy https://doi.org/10.3390/e22121412
*Corresponding author; email:
imsjaya@apps.ipb.ac.id